Rapid Phenotypic Landscape Exploration through Hierarchical Spatial Partitioning

Davy Smith, Laurissa Tokarchuk and Geraint Wiggins


Exploration of the search space through the optimisation of phenotypic diversity is of increasing interest within the field of evolutionary robotics. Novelty search and the more recent MAP-Elites are two state of the art evolutionary algorithms which diversify low dimensional phenotypic traits for divergent exploration. In this paper we introduce a novel alternative for rapid divergent search of the feature space. Unlike previous phenotypic search procedures, our proposed Spatial, Hierarchical, Illuminated Neuro-Evolution (SHINE) algorithm utilises a tree structure for the maintenance and selection of potential candidates. SHINE penalises previous solutions in more crowded areas of the landscape. Our experimental results show that SHINE significantly outperforms novelty search and MAP-Elites in both performance and exploration. We conclude that the SHINE algorithm is a viable method for rapid divergent search of low dimensional, phenotypic landscapes.

Open Full Paper